Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • zaratieg
    replied
    Thanks for your answer Devon. The data are viral insertion sites, so most of the genome is empty, with around 3000 clusters with signal ranging from 1 to 300 counts. The mapped read tells me the insertion point at its 5' end, so I made bedgraph files from the bam files with bedtools genomecov -5, and bed files with bamtobed and piping it through awk to shorten the alignments to the 5' end. The library sizes were relatively similar but not enough to ignore normalization (2.0e6, 1.92e6 and 1.83e6).
    For the normalization, aren't DEseq and edgeR used for RNAseq? as you can see this is probably a very different problem.

    Leave a comment:


  • dpryan
    replied
    The normalization strategy will depend a bit on the underlying nature of the experiment. If you expect most of the genomic chunks that you're looking at to be the same between samples then the procedures from DESeq or edgeR would work OK. R can generally calculate correlations pretty quickly. Did you just convert the mapped reads to BED format and then import that or are these regions with associated counts (i.e., modified BED files)?

    Leave a comment:


  • [n00b question] best way to make whole genome windowed coverage correlation?

    Hi everyone

    I have three samples that i would like to compare for differences in coverage. Right now the data is in .bed files. I'd like to run some statistics on them but i'm afraid I don't know how to do that. My questions are the following.

    1. What is the best normalization scheme for coverage counts, to account for library size/total read count?
    1. Is there software to do the correlation quickly?
    3. I'm also trying to learn R. I can import the .bed files to GRanges, but after that I'm stumped. Anyone know a good BioConductor package for this kind of thing?

    Thank you in advance

Latest Articles

Collapse

  • seqadmin
    Advanced Methods for the Detection of Infectious Disease
    by seqadmin




    The recent pandemic caused worldwide health, economic, and social disruptions with its reverberations still felt today. A key takeaway from this event is the need for accurate and accessible tools for detecting and tracking infectious diseases. Timely identification is essential for early intervention, managing outbreaks, and preventing their spread. This article reviews several valuable tools employed in the detection and surveillance of infectious diseases.
    ...
    11-27-2023, 01:15 PM
  • seqadmin
    Strategies for Investigating the Microbiome
    by seqadmin




    Microbiome research has led to the discovery of important connections to human and environmental health. Sequencing has become a core investigational tool in microbiome research, a subject that we covered during a recent webinar. Our expert speakers shared a number of advancements including improved experimental workflows, research involving transmission dynamics, and invaluable analysis resources. This article recaps their informative presentations, offering insights...
    11-09-2023, 07:02 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, Today, 09:55 AM
0 responses
10 views
0 likes
Last Post seqadmin  
Started by seqadmin, Yesterday, 10:48 AM
0 responses
17 views
0 likes
Last Post seqadmin  
Started by seqadmin, 11-29-2023, 08:26 AM
0 responses
13 views
0 likes
Last Post seqadmin  
Started by seqadmin, 11-29-2023, 08:12 AM
0 responses
14 views
0 likes
Last Post seqadmin  
Working...
X