Seqanswers Leaderboard Ad

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • dpryan
    replied
    Sure and for the reasons that I mentioned. Remember that the p-value just relates to believability of the finding given the data. Further, changes in biology are typically non-linear, so a 50% decrease in the knocked out gene could easily lead to larger changes in others. Not to mention that a hemizygous deletion will often not halve the expression.

    Leave a comment:


  • shangzhong0619
    replied
    Originally posted by dpryan View Post
    You'll want to use 'exon', otherwise you increase the noise from pre-mRNAs. I'm not sure why you would be disturbed to find other genes with more significant p-values than the knocked out gene. There are a few different things that affect one's ability to determine variance and the signal level (in this case, how highly expressed a gene is) is one of them. Since you're knocking the gene out, its expression should be very low in some of your samples (I'm assuming a complete knock out rather than just hemizygous), so you'll then have less power there to begin with. If this causes some other decently expressed gene to drastically increase expression then said other gene will probably have a smaller p-value. That's not really a problem.
    Hi, dpryan. Thanks for your reply. Actually my knock out is hemizygous, so in this case, it is possible to have genes more significant than the knock out gene?

    Leave a comment:


  • dpryan
    replied
    You'll want to use 'exon', otherwise you increase the noise from pre-mRNAs. I'm not sure why you would be disturbed to find other genes with more significant p-values than the knocked out gene. There are a few different things that affect one's ability to determine variance and the signal level (in this case, how highly expressed a gene is) is one of them. Since you're knocking the gene out, its expression should be very low in some of your samples (I'm assuming a complete knock out rather than just hemizygous), so you'll then have less power there to begin with. If this causes some other decently expressed gene to drastically increase expression then said other gene will probably have a smaller p-value. That's not really a problem.

    Leave a comment:


  • shangzhong0619
    started a topic HTseq-count feature type choice for RNAseq

    HTseq-count feature type choice for RNAseq

    Hi all,
    I am using HTseq-count to count reads in my bam files. I used ncbi mouse annotation file.
    I wonder which feature type (third column of gff3 file) I should use?
    My understanding of how htseq count reads is that if I choose 'exon', then it will count reads only mapping to exons and sum those up for a gene. If I choose 'gene', it will count all the reads mapping to introns and exons of that gene. Theoretically, for RNAseq I should choose exons, and ignore reads mapping to introns.
    In my sample, I know I knock out the gene ext1. I tried both choices and used DEseq2 to do differential expression analysis. In my results which I chose the 'gene' feature, the ext1 gene was the most significant gene. However, in the results for choosing 'exon', there are over 200 genes more significant than ext1. So now I am confused, it seems that the 'gene' feature are better than 'exon'? Anyone has this situation before? thanks.

Latest Articles

Collapse

  • seqadmin
    New Genomics Tools and Methods Shared at AGBT 2025
    by seqadmin


    This year’s Advances in Genome Biology and Technology (AGBT) General Meeting commemorated the 25th anniversary of the event at its original venue on Marco Island, Florida. While this year’s event didn’t include high-profile musical performances, the industry announcements and cutting-edge research still drew the attention of leading scientists.

    The Headliner
    The biggest announcement was Roche stepping back into the sequencing platform market. In the years since...
    03-03-2025, 01:39 PM
  • seqadmin
    Investigating the Gut Microbiome Through Diet and Spatial Biology
    by seqadmin




    The human gut contains trillions of microorganisms that impact digestion, immune functions, and overall health1. Despite major breakthroughs, we’re only beginning to understand the full extent of the microbiome’s influence on health and disease. Advances in next-generation sequencing and spatial biology have opened new windows into this complex environment, yet many questions remain. This article highlights two recent studies exploring how diet influences microbial...
    02-24-2025, 06:31 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, Yesterday, 05:03 AM
0 responses
16 views
0 reactions
Last Post seqadmin  
Started by seqadmin, 03-19-2025, 07:27 AM
0 responses
17 views
0 reactions
Last Post seqadmin  
Started by seqadmin, 03-18-2025, 12:50 PM
0 responses
18 views
0 reactions
Last Post seqadmin  
Started by seqadmin, 03-03-2025, 01:15 PM
0 responses
185 views
0 reactions
Last Post seqadmin  
Working...