Header Leaderboard Ad

Collapse

Design for normalization using DESeq

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Design for normalization using DESeq

    Hi all, I am analyzing 16S sequenced data of human fecal samples. I proccessed my data with qiime and have been using the R package phyloseq for the data analysis. I wish to use the phyloseq to DESeq command of the R package DESeq2 to normalize by data to stabilize the variance, and avoid rarefaction.

    My question is that I am not certain of the design I should use. I attach 10 rows of my samples variables info.

    #SampleID Treatment Treatment1 Time Sex Age Individual
    1.1 P P0 T0 F 33 1
    1.2 P P1 T1 F 33 1
    2.1 O O0 T0 F 28 2
    2.2 O O1 T1 F 28 2
    3.1 Control C0 T0 M 24 3
    3.2 Control C1 T1 M 24 3
    4.1 Control C0 T0 M 28 4
    4.2 Control C1 T1 M 28 4
    5.1 O+P OP0 T0 M 24 5
    5.2 O+P OP1 T1 M 24 5

    I had a n=40, which I randomly assigned in 4 groups ( 3 treatments (O, P and the combination of O+P) and a control group). For each group I sequenced a fecal sample prior to the treatment (T0) and after it (T1). So in total I ended up with 80 libraries from 80 samples.
    What I want to compare is the difference of composition/abundance 1) between measurements of T0 and T1 within the treatments, and the difference of composition/abundance 2) between the treatments.

    At first I used Treatment1 for the design which is a variable that combines the treatment and time. Afterwords I saw in tutorials that people uses those kind of variables separated, and also incorporated patients variable so I used the design ~ Individual + Time + Treatment.
    But R throws the error

    error in DESeqDataSet(se, design = design, ignoreRank) :
    the model matrix is not full rank, so the model cannot be fit as specified.
    one or more variables or interaction terms in the design formula
    are linear combinations of the others and must be removed


    this also happens when I put Treatment and Individual in the design, but other combinations like Time and Individual or Treatment and Time, work just fine.

    I thought it was good to add the individuals as a variable to the design, considering that the samples that are in the same treatment-time group are the biologica replica, but show great variability in the abundance count (composition of microbiota among individuals are very large in some cases).
    I thought that adding the individual variable to the desing would help to account for that variability. However maybe by adding this variable, the degrees of freedom would be bigger and the weight of the Treatment and Time variables explaining the changes in the abundances could become insignificant if the changes are subte?


    I have been trying to understand by my self reading the DESeq papers but I lack the statistical knowledge, and would like to ask you for help in understanding the error and what would be the best design for the analysis.

    thank you!!! Cheers

Latest Articles

Collapse

  • seqadmin
    How RNA-Seq is Transforming Cancer Studies
    by seqadmin



    Cancer research has been transformed through numerous molecular techniques, with RNA sequencing (RNA-seq) playing a crucial role in understanding the complexity of the disease. Maša Ivin, Ph.D., Scientific Writer at Lexogen, and Yvonne Goepel Ph.D., Product Manager at Lexogen, remarked that “The high-throughput nature of RNA-seq allows for rapid profiling and deep exploration of the transcriptome.” They emphasized its indispensable role in cancer research, aiding in biomarker...
    09-07-2023, 11:15 PM
  • seqadmin
    Methods for Investigating the Transcriptome
    by seqadmin




    Ribonucleic acid (RNA) represents a range of diverse molecules that play a crucial role in many cellular processes. From serving as a protein template to regulating genes, the complex processes involving RNA make it a focal point of study for many scientists. This article will spotlight various methods scientists have developed to investigate different RNA subtypes and the broader transcriptome.

    Whole Transcriptome RNA-seq
    Whole transcriptome sequencing...
    08-31-2023, 11:07 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 09-22-2023, 09:05 AM
0 responses
19 views
0 likes
Last Post seqadmin  
Started by seqadmin, 09-21-2023, 06:18 AM
0 responses
13 views
0 likes
Last Post seqadmin  
Started by seqadmin, 09-20-2023, 09:17 AM
0 responses
13 views
0 likes
Last Post seqadmin  
Started by seqadmin, 09-19-2023, 09:23 AM
0 responses
28 views
0 likes
Last Post seqadmin  
Working...
X