Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Introducing KmerCompressor, a tool for set operations on kmers

    I'd like to introduce a new BBTool, KmerCompressor. This will take a dataset and reduce it to its set of constituent kmers, and print an optimally-condensed representation of them in fasta format, in which each kmer occurs exactly once. This is similar to an assembler, but it has additional capabilities regarding kmer count cutoffs that allow it to be used to perform arbitrary set operations on kmers, which allows advanced filtering of raw reads to capture specific features such as ribosomes, mitochondria, and chloroplasts, or filter by taxonomy.

    The basic usage is like this:
    kcompress.sh in=reads.fq out=set.fa

    To get just the 31-mers that appear between 100 and 150 times in a dataset:
    kcompress.sh in=reads.fq out=set.fa min=100 max=150 k=31

    To use it for a set union (all the kmers in either of two files):
    kcompress.sh in=ecoli.fa,salmonella.fa out=union.fa

    With those basic operations, it is now possible to do various set operations. For example:
    kcompress.sh in=fungal_genome.fa out=set_g.fa
    kcompress.sh in=fungal_mitochondria.fa out=set_m.fa


    Each of those sets has each kmer represented exactly once. Therefore, you can perform an intersection like this:
    kcompress.sh in=set_g.fa,set_m.fa out=intersection.fa min=2

    Or a subtraction like this:
    kcompress.sh in=set_m.fa,intersection.fa out=m_minus_g.fa max=1

    Then m_minus_g.fa contains all the kmers that are specific only to mitochondria in that organism, and could be used for filtering reads in an iterative assembly process.
    I've been recently using it to create a set of ribosomal kmers for rapid metatranscriptome rRNA filtering using BBDuk, by reducing a very large ribosomal (16S/18S) database to just the set of kmers that occur often (and are thus both correct and conserved). This is useful for avoiding false positives, and reducing load time and memory usage compared to working with the entire database. For example:
    dedupe.sh in=multiple_ribo_databases.fa.gz out=nodupes.fa.gz
    kcompress.sh in=nodupes.fa.gz out=compressed.fa.gz k=31 min=5


    ...will result in a much smaller file, with similar (tunable) sensitivity and better specificity compared to the original. Subsequently, I run:
    bbduk.sh in=metatranscriptome.fq.gz outu=nonribo.fq.gz outm=ribo.fq.gz ref=compressed.fa.gz k=31

    ...to separate the reads.

    P.S. A link to a file I created with KmerCompressor: ribokmers.fa.gz
    This 9MB file contains commonly-occurring ribosomal kmers from Silva. Used in conjunction with BBDuk, like this:

    bbduk.sh in=reads.fq outm=ribo.fq outu=nonribo.fq k=31 ref=ribokmers.fa.gz


    ...it has a roughly 99.94% sensitivity against synthetic 1x150bp from the full Silva database (180MB compressed), a 99.98% sensitivity with hdist=1, and 99.994% sensitivity at k=25 hdist=1.
    Last edited by Brian Bushnell; 10-06-2015, 04:49 PM.

  • #2
    What is the upper limit on the k-mer size one can specify?

    Comment


    • #3
      It's currently capped at 31, though I could make an unlimited-kmer-length version in a few hours. That would probably be worth doing, if I get some free time.

      Comment


      • #4
        Very neat! Time to start playing.

        Comment

        Latest Articles

        Collapse

        • seqadmin
          Current Approaches to Protein Sequencing
          by seqadmin


          Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
          04-04-2024, 04:25 PM
        • seqadmin
          Strategies for Sequencing Challenging Samples
          by seqadmin


          Despite advancements in sequencing platforms and related sample preparation technologies, certain sample types continue to present significant challenges that can compromise sequencing results. Pedro Echave, Senior Manager of the Global Business Segment at Revvity, explained that the success of a sequencing experiment ultimately depends on the amount and integrity of the nucleic acid template (RNA or DNA) obtained from a sample. “The better the quality of the nucleic acid isolated...
          03-22-2024, 06:39 AM

        ad_right_rmr

        Collapse

        News

        Collapse

        Topics Statistics Last Post
        Started by seqadmin, 04-11-2024, 12:08 PM
        0 responses
        13 views
        0 likes
        Last Post seqadmin  
        Started by seqadmin, 04-10-2024, 10:19 PM
        0 responses
        19 views
        0 likes
        Last Post seqadmin  
        Started by seqadmin, 04-10-2024, 09:21 AM
        0 responses
        15 views
        0 likes
        Last Post seqadmin  
        Started by seqadmin, 04-04-2024, 09:00 AM
        0 responses
        43 views
        0 likes
        Last Post seqadmin  
        Working...
        X