Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • How did the edgeR authors compute Figure 2 (genewise deviance statistics?)

    **UPDATE**
    I've migrated (aka copied) this question over to the biostars forum: https://www.biostars.org/p/244455/. Please look there for further discussion.

    McCarthy, D.J., Chen, Y., and Smyth, G.K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40, 4288–4297.

    https://academic.oup.com/nar/article/40/10/4288/2411520/Differential-expression-analysis-of-multifactor


    In Figure 2 of this paper, the authors show that estimating dispersion on a per-gene basis is more compatible with their data. Am I allowed to attach it here as an image? If so, I gladly will do!

    I think understand broadly what is being demonstrated here (please correct me if I'm mistaken): When we estimate dispersions, that is an implicit model of the ratio of the mean to the standard deviation of each gene. Here, the authors are showing, with QQ plots, that the per-gene model describes the observed ratio better than a common dispersion value. Each dot in the plot corresponds to a gene.

    I'd like to generate this figure for my own data, but I don't understand how to compute the two vectors required. I'm guessing that one might be the log likelihood after fitting the GLM?

    Thanks for any light you can shed (code also gratefully appreciated, but no obligation)
    Last edited by gabe_rosser; 03-29-2017, 01:44 AM. Reason: Add details of post on another forum

Latest Articles

Collapse

  • seqadmin
    Non-Coding RNA Research and Technologies
    by seqadmin




    Non-coding RNAs (ncRNAs) do not code for proteins but play important roles in numerous cellular processes including gene silencing, developmental pathways, and more. There are numerous types including microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA), and more. In this article, we discuss innovative ncRNA research and explore recent technological advancements that improve the study of ncRNAs.

    Nobel Prize for MicroRNA Discovery
    This week,...
    10-07-2024, 08:07 AM
  • seqadmin
    Recent Developments in Metagenomics
    by seqadmin





    Metagenomics has improved the way researchers study microorganisms across diverse environments. Historically, studying microorganisms relied on culturing them in the lab, a method that limits the investigation of many species since most are unculturable1. Metagenomics overcomes these issues by allowing the study of microorganisms regardless of their ability to be cultured or the environments they inhabit. Over time, the field has evolved, especially with the advent...
    09-23-2024, 06:35 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, Today, 06:55 AM
0 responses
7 views
0 likes
Last Post seqadmin  
Started by seqadmin, 10-02-2024, 04:51 AM
0 responses
104 views
0 likes
Last Post seqadmin  
Started by seqadmin, 10-01-2024, 07:10 AM
0 responses
112 views
0 likes
Last Post seqadmin  
Started by seqadmin, 09-30-2024, 08:33 AM
1 response
117 views
0 likes
Last Post EmiTom
by EmiTom
 
Working...
X