Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • New Computational Tool Predicts Variations with Impressive Accuracy

    Click image for larger version

Name:	Low-Res_Press_final.jpg
Views:	124
Size:	58.5 KB
ID:	325309
    LoGoFunc identifies harmful (left) and harmless (right) genetic variations in the Vasopressin V2 receptor protein using a structure predicted by AlphaFold2. This helps explain how genetic changes affect proteins. (Image credit: Stein et al., Genome Medicine)


    Innovative Computational Approach in Genetics
    Researchers from the Icahn School of Medicine at Mount Sinai have developed LoGoFunc, a sophisticated computational tool designed to predict pathogenic gain- and loss-of-function variants across the genome. This innovative tool marks significant progress in genetic research, addressing a critical gap in the field by distinguishing between different types of harmful mutations. The study detailing these findings was published in the November 30 online issue of Genome Medicine.

    A New Tool in Understanding Genetic Variations
    Genetic variations can lead to altered protein functions, which in turn can significantly affect human health and disease treatment. Existing tools struggle to differentiate between gain and loss of function in these variations. LoGoFunc, however, excels in this area, offering insights into the varied impacts these mutations can have on protein activity and, consequently, disease outcomes.

    “Tools presently available fall short in differentiating between gain and loss of function, which motivated us to develop LoGoFunc. This matters because these variants impact protein activity differently, influencing disease outcomes. We created an innovative tool that addresses a critical gap in the field, providing a practical way to understand the functional consequences of genetic variations on a larger scale,” stated Yuval Itan, Ph.D., Associate Professor of Genetics and Genomic Sciences at Icahn Mount Sinai and co-senior corresponding author of the study.

    Technological Backbone of LoGoFunc
    LoGoFunc employs machine learning, trained on a database of known pathogenic gain-of-function and loss-of-function mutations from literature. The tool considers an extensive array of 474 biological features, including data from protein structures predicted by AlphaFold2 and network features reflecting human protein interactions. Tested on sets from the Human Gene Mutation Database and ClinVar, LoGoFunc has demonstrated high accuracy in predicting various types of genetic variants.

    Implications and Future Prospects
    “Beyond personalized medicine, LoGoFunc has implications for drug discovery, genetic counseling, and accelerating genetic research. Its accessibility promotes collaboration and offers a comprehensive view of variant impact across the human genome,” explained co-senior corresponding author Avner Schlessinger, Ph.D.

    Despite these advancements, the researchers caution that further validation and integration with other medical information are essential for clinical application. The tool's predictions, though promising, are based on existing training data and inherent assumptions. Therefore, ongoing validation and refinements are critical for ensuring its reliability.

    David Stein, a Ph.D. candidate at Icahn Mount Sinai and the study's first author, underscored the tool's potential to enhance our understanding of genetic variations and their contribution to diseases. However, he also emphasized the importance of ongoing efforts to validate LoGoFunc's predictions for real-world impact.

    Access and Future Research
    LoGoFunc's predictions for missense variants across the entire genome are accessible for non-commercial use and analysis at the Icahn Mount Sinai's dedicated portal. The researchers are committed to refining LoGoFunc's capabilities and extending its scope in future research endeavors.

    Read more from the original publication at:
    Stein, D., Kars, M.E., Wu, Y. et al. Genome-wide prediction of pathogenic gain- and loss-of-function variants from ensemble learning of a diverse feature set. Genome Med 15, 103 (2023). https://doi.org/10.1186/s13073-023-01261-9

Latest Articles

Collapse

  • seqadmin
    Exploring the Dynamics of the Tumor Microenvironment
    by seqadmin




    The complexity of cancer is clearly demonstrated in the diverse ecosystem of the tumor microenvironment (TME). The TME is made up of numerous cell types and its development begins with the changes that happen during oncogenesis. “Genomic mutations, copy number changes, epigenetic alterations, and alternative gene expression occur to varying degrees within the affected tumor cells,” explained Andrea O’Hara, Ph.D., Strategic Technical Specialist at Azenta. “As...
    07-08-2024, 03:19 PM
  • seqadmin
    Exploring Human Diversity Through Large-Scale Omics
    by seqadmin


    In 2003, researchers from the Human Genome Project (HGP) announced the most comprehensive genome to date1. Although the genome wasn’t fully completed until nearly 20 years later2, numerous large-scale projects, such as the International HapMap Project and 1000 Genomes Project, continued the HGP's work, capturing extensive variation and genomic diversity within humans. Recently, newer initiatives have significantly increased in scale and expanded beyond genomics, offering a more detailed...
    06-25-2024, 06:43 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 07-19-2024, 07:20 AM
0 responses
35 views
0 likes
Last Post seqadmin  
Started by seqadmin, 07-16-2024, 05:49 AM
0 responses
46 views
0 likes
Last Post seqadmin  
Started by seqadmin, 07-15-2024, 06:53 AM
0 responses
56 views
0 likes
Last Post seqadmin  
Started by seqadmin, 07-10-2024, 07:30 AM
0 responses
43 views
0 likes
Last Post seqadmin  
Working...
X