Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Program to relate SNPs to model genome annotation?

    EMS-mutagenesis causes G->A and C->T transitions. In most cases large numbers of these lesions are produced per genome with only one being the source of mutant phenotype screened for.

    I have a lists of 50-100 of these mutations/genome for a number of yeast strains as determined from a SOLiD sequencing run.

    What is the recommended method to convert this information (single base change at a known genomic location) to gene name and effect on the gene (eg, synonymous--no change to protein sequence, 1 residue change to sequence, or truncation)? Seems like something that would already have been written.

    --
    Phillip
    Last edited by pmiguel; 04-13-2010, 07:29 AM. Reason: Typo

  • #2
    Originally posted by pmiguel View Post
    What is the recommended method to convert this information (single base change at a known genomic location) to gene name and effect on the gene (eg, synonymous--no change to protein sequence, 1 residue change to sequence, or truncation)? Seems like something that would already have been written.
    The "consequences" module in our software Nesoni (*) does this... BUT it requires you to use the previous "shrimp" (align) and "consensus" (call) modules beforehand - all the modules share a folder of results. It is mainly useful for bacterial genomes, so perhaps not as useful to you.

    If it is only subsitutions and not indels, it's a pretty simple BioPerl script to take your list and a Genbank file of the genome and test the effects on each CDS.

    (*) Nesoni http://www.vicbioinformatics.com/software.nesoni.shtml

    Comment


    • #3
      Originally posted by Torst View Post
      The "consequences" module in our software Nesoni (*) does this... BUT it requires you to use the previous "shrimp" (align) and "consensus" (call) modules beforehand - all the modules share a folder of results. It is mainly useful for bacterial genomes, so perhaps not as useful to you.

      If it is only subsitutions and not indels, it's a pretty simple BioPerl script to take your list and a Genbank file of the genome and test the effects on each CDS.

      (*) Nesoni http://www.vicbioinformatics.com/software.nesoni.shtml
      Does it handle multiple exon genes okay? I notice you are primarily a bacterial informatics shop...

      Thanks for the response,
      Phillip

      Comment


      • #4
        Originally posted by pmiguel View Post
        Does it handle multiple exon genes okay? I notice you are primarily a bacterial informatics shop...
        Yes as I said we are bacteria focussed. Even in bacteria we have introns sometimes, and pseudo genes are often written as join(a..b,c..d) for the N-term and C-term "exons". Nesoni uses BioPython for the annotation retrieval, so it *may* work. I will talk to the primary author and find out; it probably isn't difficult to alter to work with join() features. You could try it on a small chromosome? (Assuming you have a server with enough RAM)

        --Torst

        Comment


        • #5
          Originally posted by Torst View Post
          Yes as I said we are bacteria focussed. Even in bacteria we have introns sometimes, and pseudo genes are often written as join(a..b,c..d) for the N-term and C-term "exons". Nesoni uses BioPython for the annotation retrieval, so it *may* work. I will talk to the primary author and find out; it probably isn't difficult to alter to work with join() features. You could try it on a small chromosome? (Assuming you have a server with enough RAM)

          --Torst
          Hi Torst,
          Thanks again for you response. I ended up writing a script employing bioperl to do this. Initially I thought it would take me less time than acquiring and installing Nesoni. But since it took me several days to write and debug my code I was probably wrong.
          Phillip

          Comment

          Latest Articles

          Collapse

          • seqadmin
            Recent Developments in Metagenomics
            by seqadmin





            Metagenomics has improved the way researchers study microorganisms across diverse environments. Historically, studying microorganisms relied on culturing them in the lab, a method that limits the investigation of many species since most are unculturable1. Metagenomics overcomes these issues by allowing the study of microorganisms regardless of their ability to be cultured or the environments they inhabit. Over time, the field has evolved, especially with the advent...
            09-23-2024, 06:35 AM
          • seqadmin
            Understanding Genetic Influence on Infectious Disease
            by seqadmin




            During the COVID-19 pandemic, scientists observed that while some individuals experienced severe illness when infected with SARS-CoV-2, others were barely affected. These disparities left researchers and clinicians wondering what causes the wide variations in response to viral infections and what role genetics plays.

            Jean-Laurent Casanova, M.D., Ph.D., Professor at Rockefeller University, is a leading expert in this crossover between genetics and infectious...
            09-09-2024, 10:59 AM

          ad_right_rmr

          Collapse

          News

          Collapse

          Topics Statistics Last Post
          Started by seqadmin, 10-02-2024, 04:51 AM
          0 responses
          13 views
          0 likes
          Last Post seqadmin  
          Started by seqadmin, 10-01-2024, 07:10 AM
          0 responses
          21 views
          0 likes
          Last Post seqadmin  
          Started by seqadmin, 09-30-2024, 08:33 AM
          0 responses
          25 views
          0 likes
          Last Post seqadmin  
          Started by seqadmin, 09-26-2024, 12:57 PM
          0 responses
          18 views
          0 likes
          Last Post seqadmin  
          Working...
          X