Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PubMed: Bias Detection and Correction in RNA-Sequencing Data.

    Syndicated from PubMed RSS Feeds

    Bias Detection and Correction in RNA-Sequencing Data.

    BMC Bioinformatics. 2011 Jul 19;12(1):290

    Authors: Zheng W, Chung LM, Zhao H

    ABSTRACT: BACKGROUND: High throughput sequencing technology provides us unprecedented opportunities to study transcriptome dynamics. Compared to microarray-based gene expression profiling, RNA-Seq has many advantages, such as high resolution, low background, and ability to identify novel transcripts. Moreover, for genes with multiple isoforms, expression of each isoform may be estimated from RNA-Seq data. Despite these advantages, recent work revealed that base level read counts from RNA-Seq data may not be randomly distributed and can be affected by local nucleotide composition. It was not clear though how the base level read count bias may affect gene level expression estimates. RESULTS: In this paper, by using five published RNA-Seq data sets from different biological sources and with different data preprocessing schemes, we showed that commonly used estimates of gene expression levels from RNA-Seq data, such as reads per kilobase of gene length per million reads (RPKM), are biased in terms of gene length, GC content and dinucleotide frequencies. We directly examined the biases at the gene-level, and proposed a simple generalized-additive-model based approach to correct different sources of biases simultaneously. Compared to previously proposed base level correction methods, our method reduces bias in gene-level expression estimates more effectively. CONCLUSIONS: Our method identifies and corrects different sources of biases in gene-level expression measures from RNA-Seq data, and provides more accurate estimates of gene expression levels from RNA-Seq. This method should prove useful in meta-analysis of gene expression levels using different platforms or experimental protocols.

    PMID: 21771300 [PubMed - as supplied by publisher]



    More...

Latest Articles

Collapse

  • seqadmin
    Essential Discoveries and Tools in Epitranscriptomics
    by seqadmin




    The field of epigenetics has traditionally concentrated more on DNA and how changes like methylation and phosphorylation of histones impact gene expression and regulation. However, our increased understanding of RNA modifications and their importance in cellular processes has led to a rise in epitranscriptomics research. “Epitranscriptomics brings together the concepts of epigenetics and gene expression,” explained Adrien Leger, PhD, Principal Research Scientist...
    04-22-2024, 07:01 AM
  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 04-25-2024, 11:49 AM
0 responses
19 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-24-2024, 08:47 AM
0 responses
19 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
62 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
60 views
0 likes
Last Post seqadmin  
Working...
X