Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PubMed: Linkage analysis in the next-generation sequencing era.

    Syndicated from PubMed RSS Feeds

    Linkage analysis in the next-generation sequencing era.

    Hum Hered. 2011;72(4):228-36

    Authors: Bailey-Wilson JE, Wilson AF

    Abstract
    Linkage analysis was developed to detect excess co-segregation of the putative alleles underlying a phenotype with the alleles at a marker locus in family data. Many different variations of this analysis and corresponding study design have been developed to detect this co-segregation. Linkage studies have been shown to have high power to detect loci that have alleles (or variants) with a large effect size, i.e. alleles that make large contributions to the risk of a disease or to the variation of a quantitative trait. However, alleles with a large effect size tend to be rare in the population. In contrast, association studies are designed to have high power to detect common alleles which tend to have a small effect size for most diseases or traits. Although genome-wide association studies have been successful in detecting many new loci with common alleles of small effect for many complex traits, these common variants often do not explain a large proportion of disease risk or variation of the trait. In the past, linkage studies were successful in detecting regions of the genome that were likely to harbor rare variants with large effect for many simple Mendelian diseases and for many complex traits. However, identifying the actual sequence variant(s) responsible for these linkage signals was challenging because of difficulties in sequencing the large regions implicated by each linkage peak. Current 'next-generation' DNA sequencing techniques have made it economically feasible to sequence all exons or the whole genomes of a reasonably large number of individuals. Studies have shown that rare variants are quite common in the general population, and it is now possible to combine these new DNA sequencing methods with linkage studies to identify rare causal variants with a large effect size. A brief review of linkage methods is presented here with examples of their relevance and usefulness for the interpretation of whole-exome and whole-genome sequence data.


    PMID: 22189465 [PubMed - indexed for MEDLINE]



    More...

Latest Articles

Collapse

  • seqadmin
    Recent Advances in Sequencing Analysis Tools
    by seqadmin


    The sequencing world is rapidly changing due to declining costs, enhanced accuracies, and the advent of newer, cutting-edge instruments. Equally important to these developments are improvements in sequencing analysis, a process that converts vast amounts of raw data into a comprehensible and meaningful form. This complex task requires expertise and the right analysis tools. In this article, we highlight the progress and innovation in sequencing analysis by reviewing several of the...
    05-06-2024, 07:48 AM
  • seqadmin
    Essential Discoveries and Tools in Epitranscriptomics
    by seqadmin




    The field of epigenetics has traditionally concentrated more on DNA and how changes like methylation and phosphorylation of histones impact gene expression and regulation. However, our increased understanding of RNA modifications and their importance in cellular processes has led to a rise in epitranscriptomics research. “Epitranscriptomics brings together the concepts of epigenetics and gene expression,” explained Adrien Leger, PhD, Principal Research Scientist...
    04-22-2024, 07:01 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, Today, 02:46 PM
0 responses
8 views
0 likes
Last Post seqadmin  
Started by seqadmin, 05-07-2024, 06:57 AM
0 responses
13 views
0 likes
Last Post seqadmin  
Started by seqadmin, 05-06-2024, 07:17 AM
0 responses
16 views
0 likes
Last Post seqadmin  
Started by seqadmin, 05-02-2024, 08:06 AM
0 responses
23 views
0 likes
Last Post seqadmin  
Working...
X