Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Mapping RefSeq transcripts to the genome using UCSC - See more at: http://blog.avadis

    Mapping RefSeq transcripts to the genome using UCSC - See more at: http://blog.avadis-ngs.com/#sthash.9KimlOwK.dpuf

    Transcript annotations are extensively used in NGS data analysis. In RNA-Seq, they are used at every step of the pipeline – to map spliced reads against the genome, perform quantification, detect novel exons etc. In DNA-Seq, they are used to predict the effect of variants detected in the sample. Clearly accurate transcript annotations are vital for NGS work.
    Many researchers prefer to work with RefSeq transcripts because they are manually curated. But there is a problem. The RefSeq transcript project provides the transcript sequence and the location of exons on the transcript sequence but does not provide the genomic coordinates for the exons. So one common strategy is to obtain the genomic coordinates from UCSC. The folks at UCSC routinely align the RefSeq transcript sequences against the genome using BLAT and make the results available as a “refFlat” files in their download site.
    Unfortunately, these BLAT alignment are sometimes wrong.
    Shown below is the transcript track for TNNI3 which is a gene on the negative strand of chromosome 19. Note that the coding region of the first exon in the “RefSeq genes” picture occupies 22bp while the USCC track at the top shows only 11bp.
    Exon 1 of TNNI3 in UCSC

    The RefSeq transcript that was used by UCSC for alignment can be obtained by clicking on the TNNI3 word in the RefSeq gene track and it is NM_000363.4. A portion of the transcript entry is shown below.
    TNNI3 RefSeq transcript details

    The RefSeq entry clearly indicates that only 11 bases (144-154) at the end of the first exon represent coding bases. Moreover, the transcript has a CCDS entry indicating that there is a genomic alignment which translates to the protein sequence shown.
    To get a better understanding of the problem, we looked at the UCSC and the RefSeq transcripts in more detail in the Elastic Genome Browser. The introns have been compressed so that exonic and essential splice site sequences can be seen in more detail.
    TNNI3 in EGB

    Some of the observations from the above picture are:
    the alignment for the RefSeq transcript leads to a premature stop-codon very early on,
    the essential splice site signals are correct in the UCSC transcript but wrong in the RefSeq transcript alignment
    These are sanity checks that any researcher using the UCSC alignments of RefSeq transcripts should incorporate before carrying out analysis.
    And, finally, the picture also suggests why this error happened. The incorrect extension to exon 1 in the RefSeq transcript alignment (GCATCACTCAC) is very similar to the sequence of the small exon 2 present in the UCSC transcript (GCATCGCTGCTC). It is possible that the BLAT alignment is not well suited for detecting small intermediate exons especially if there is an alternate alignment which is very similar.
    - See more at: http://blog.avadis-ngs.com/#sthash.9KimlOwK.dpuf

Latest Articles

Collapse

  • seqadmin
    Best Practices for Single-Cell Sequencing Analysis
    by seqadmin



    While isolating and preparing single cells for sequencing was historically the bottleneck, recent technological advancements have shifted the challenge to data analysis. This highlights the rapidly evolving nature of single-cell sequencing. The inherent complexity of single-cell analysis has intensified with the surge in data volume and the incorporation of diverse and more complex datasets. This article explores the challenges in analysis, examines common pitfalls, offers...
    Today, 07:15 AM
  • seqadmin
    Latest Developments in Precision Medicine
    by seqadmin



    Technological advances have led to drastic improvements in the field of precision medicine, enabling more personalized approaches to treatment. This article explores four leading groups that are overcoming many of the challenges of genomic profiling and precision medicine through their innovative platforms and technologies.

    Somatic Genomics
    “We have such a tremendous amount of genetic diversity that exists within each of us, and not just between us as individuals,”...
    05-24-2024, 01:16 PM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, Today, 08:18 AM
0 responses
11 views
0 likes
Last Post seqadmin  
Started by seqadmin, Today, 08:04 AM
0 responses
12 views
0 likes
Last Post seqadmin  
Started by seqadmin, 06-03-2024, 06:55 AM
0 responses
13 views
0 likes
Last Post seqadmin  
Started by seqadmin, 05-30-2024, 03:16 PM
0 responses
27 views
0 likes
Last Post seqadmin  
Working...
X