Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • #16
    Originally posted by Len Trigg View Post
    Jo,

    The 1-50bp note is more about the default RTG mapping settings (you'd have to start adjusting the aligner settings to look for longer indels, at somewhat of a speed penalty). The variant caller will happily process anything you throw at it. The mappings in your original screenshot looked fine (in that there were reads spanning the deletion, plus some hanging into it, which all gets correctly taken into account by the caller during it's local realignment to the indel hypotheses, so I would say do *not* trim the ends of the reads after alignment).
    Ok great, I'll give the RTG caller a go.

    Comment


    • #17
      Originally posted by Len Trigg View Post
      Jo,

      The 1-50bp note is more about the default RTG mapping settings (you'd have to start adjusting the aligner settings to look for longer indels, at somewhat of a speed penalty). The variant caller will happily process anything you throw at it. The mappings in your original screenshot looked fine (in that there were reads spanning the deletion, plus some hanging into it, which all gets correctly taken into account by the caller during it's local realignment to the indel hypotheses, so I would say do *not* trim the ends of the reads after alignment).
      Hi Len, I was able to run the RTG variant caller using the bam file produced using BBMap (without removing duplicate mapping reads and without trimming ends after mapping) and it seemed to work well. To calculate relative numbers of each haplotype from the VCF file, I took the allelic depths for the ref and alternate alles (AD) and divided it by total read depth at a variant location (DP). Using this, I estimated the rate of the large (~200bp) deletion at 25%, which is close to the numbers put out by other callers (19-34%).

      Comment

      Latest Articles

      Collapse

      • seqadmin
        Essential Discoveries and Tools in Epitranscriptomics
        by seqadmin




        The field of epigenetics has traditionally concentrated more on DNA and how changes like methylation and phosphorylation of histones impact gene expression and regulation. However, our increased understanding of RNA modifications and their importance in cellular processes has led to a rise in epitranscriptomics research. “Epitranscriptomics brings together the concepts of epigenetics and gene expression,” explained Adrien Leger, PhD, Principal Research Scientist...
        04-22-2024, 07:01 AM
      • seqadmin
        Current Approaches to Protein Sequencing
        by seqadmin


        Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
        04-04-2024, 04:25 PM

      ad_right_rmr

      Collapse

      News

      Collapse

      Topics Statistics Last Post
      Started by seqadmin, 04-25-2024, 11:49 AM
      0 responses
      20 views
      0 likes
      Last Post seqadmin  
      Started by seqadmin, 04-24-2024, 08:47 AM
      0 responses
      20 views
      0 likes
      Last Post seqadmin  
      Started by seqadmin, 04-11-2024, 12:08 PM
      0 responses
      62 views
      0 likes
      Last Post seqadmin  
      Started by seqadmin, 04-10-2024, 10:19 PM
      0 responses
      61 views
      0 likes
      Last Post seqadmin  
      Working...
      X