Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PubMed: Applications of Ultra-high-Throughput Sequencing.

    Syndicated from PubMed RSS Feeds

    Related Articles Applications of Ultra-high-Throughput Sequencing.

    Methods Mol Biol. 2009;553:79-108

    Authors: Fox S, Filichkin S, Mockler TC

    The genomics era has enabled scientists to more readily pose truly global questions regarding mutation, evolution, gene and genome structure, function, and regulation. Just as Sanger sequencing ushered in a paradigm shift that enabled the molecular basis of biological questions to be directly addressed, to an even greater degree, ultra-high-throughput DNA sequencing is poised to dramatically change the nature of biological research. New sequencing technologies have opened the door for novel questions to be addressed at the level of the entire genome in the areas of comparative genomics, systems biology, metagenomics, and genome biology. These new sequencing technologies provide a tremendous amount of DNA sequence data to be collected at an astounding pace, with reduced costs, effort, and time as compared to Sanger sequencing. Applications of ultra-high-throughput sequencing (UHTS) are essentially limited only by the imaginations of researchers, and include genome sequencing/resequencing, small RNA discovery, deep SNP discovery, chromatin immunoprecipitation (ChIP) and RNA immunoprecipitation (RIP) coupled with sequence identification, transcriptome analysis including empirical annotation, discovery and characterization of alternative splicing, and gene expression profiling. This technology will have a profound impact on plant breeding, biotechnology, and our fundamental understanding of plant evolution, development, and environmental responses. In this chapter, we provide an overview of UHTS approaches and their applications. We also describe a protocol we have developed for deep sequencing of plant transcriptomes using the Illumina/Solexa sequencing platform.

    PMID: 19588102 [PubMed - in process]



    More...

Latest Articles

Collapse

  • seqadmin
    Best Practices for Single-Cell Sequencing Analysis
    by seqadmin



    While isolating and preparing single cells for sequencing was historically the bottleneck, recent technological advancements have shifted the challenge to data analysis. This highlights the rapidly evolving nature of single-cell sequencing. The inherent complexity of single-cell analysis has intensified with the surge in data volume and the incorporation of diverse and more complex datasets. This article explores the challenges in analysis, examines common pitfalls, offers...
    06-06-2024, 07:15 AM
  • seqadmin
    Latest Developments in Precision Medicine
    by seqadmin



    Technological advances have led to drastic improvements in the field of precision medicine, enabling more personalized approaches to treatment. This article explores four leading groups that are overcoming many of the challenges of genomic profiling and precision medicine through their innovative platforms and technologies.

    Somatic Genomics
    “We have such a tremendous amount of genetic diversity that exists within each of us, and not just between us as individuals,”...
    05-24-2024, 01:16 PM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 06-07-2024, 06:58 AM
0 responses
13 views
0 likes
Last Post seqadmin  
Started by seqadmin, 06-06-2024, 08:18 AM
0 responses
23 views
0 likes
Last Post seqadmin  
Started by seqadmin, 06-06-2024, 08:04 AM
0 responses
20 views
0 likes
Last Post seqadmin  
Started by seqadmin, 06-03-2024, 06:55 AM
0 responses
14 views
0 likes
Last Post seqadmin  
Working...
X