Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PubMed: Developmental regulation and individual differences of neuronal H3K4me3 epige

    Syndicated from PubMed RSS Feeds

    Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex.

    Proc Natl Acad Sci U S A. 2010 Apr 26;

    Authors: Cheung I, Shulha HP, Jiang Y, Matevossian A, Wang J, Weng Z, Akbarian S

    Little is known about the regulation of neuronal and other cell-type specific epigenomes from the brain. Here, we map the genome-wide distribution of trimethylated histone H3K4 (H3K4me3), a mark associated with transcriptional regulation, in neuronal and nonneuronal nuclei collected from prefrontal cortex (PFC) of 11 individuals ranging in age from 0.5 to 69 years. Massively parallel sequencing identified 12,732-19,704 H3K4me3 enriched regions (peaks), the majority located proximal to (within 2 kb of) the transcription start site (TSS) of annotated genes. These included peaks shared by neurons in comparison with three control (lymphocyte) cell types, as well as peaks specific to individual subjects. We identified 6,213 genes that show highly enriched H3K4me3 in neurons versus control. At least 1,370 loci, including annotated genes and novel transcripts, were selectively tagged with H3K4me3 in neuronal but not in nonneuronal PFC chromatin. Our results reveal age-correlated neuronal epigenome reorganization, including decreased H3K4me3 at approximately 600 genes (many function in developmental processes) during the first year after birth. In comparison, the epigenome of aging (>60 years) PFC neurons showed less extensive changes, including increased H3K4me3 at 100 genes. These findings demonstrate that H3K4me3 in human PFC is highly regulated in a cell type- and subject-specific manner and highlight the importance of early childhood for developmentally regulated chromatin remodeling in prefrontal neurons.

    PMID: 20421462 [PubMed - as supplied by publisher]



    More...

Latest Articles

Collapse

  • seqadmin
    Recent Advances in Sequencing Analysis Tools
    by seqadmin


    The sequencing world is rapidly changing due to declining costs, enhanced accuracies, and the advent of newer, cutting-edge instruments. Equally important to these developments are improvements in sequencing analysis, a process that converts vast amounts of raw data into a comprehensible and meaningful form. This complex task requires expertise and the right analysis tools. In this article, we highlight the progress and innovation in sequencing analysis by reviewing several of the...
    05-06-2024, 07:48 AM
  • seqadmin
    Essential Discoveries and Tools in Epitranscriptomics
    by seqadmin




    The field of epigenetics has traditionally concentrated more on DNA and how changes like methylation and phosphorylation of histones impact gene expression and regulation. However, our increased understanding of RNA modifications and their importance in cellular processes has led to a rise in epitranscriptomics research. “Epitranscriptomics brings together the concepts of epigenetics and gene expression,” explained Adrien Leger, PhD, Principal Research Scientist...
    04-22-2024, 07:01 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, Today, 07:03 AM
0 responses
1 view
0 likes
Last Post seqadmin  
Started by seqadmin, 05-10-2024, 06:35 AM
0 responses
20 views
0 likes
Last Post seqadmin  
Started by seqadmin, 05-09-2024, 02:46 PM
0 responses
26 views
0 likes
Last Post seqadmin  
Started by seqadmin, 05-07-2024, 06:57 AM
0 responses
21 views
0 likes
Last Post seqadmin  
Working...
X