Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PubMed: Monovalent and unpoised status of most genes in undifferentiated cell-enriche

    Syndicated from PubMed RSS Feeds

    Related Articles Monovalent and unpoised status of most genes in undifferentiated cell-enriched Drosophila testis.

    Genome Biol. 2010 Apr 15;11(4):R42

    Authors: Gan Q, Schones D, Eun SH, Wei G, Cui K, Zhao K, Chen X

    ABSTRACT: BACKGROUND: Increasing evidence demonstrates that stem cells maintain their identities by a unique transcription network and chromatin structure. Opposing epigenetic modifications H3K27me3 and H3K4me3 have been proposed to label differentiation-associated genes in stem cells, progenitor and precursor cells. In addition, many differentiation-associated genes are maintained at a poised status by recruitment of the initiative RNA Polymerase II (Pol II) at their promoter regions, in preparation for lineage-specific expression upon differentiation. Previous studies have been performed using cultured mammalian embryonic stem cells. To a lesser extent, chromatin structure has been delineated in other model organisms, such as Drosophila, to open new avenues for genetic analyses. RESULTS: Here we use testes isolated from a Drosophila bag of marbles mutant strain, from which germ cells are in their undifferentiated status. We use these testes to study the endogenous chromatin structure of undifferentiated cells using ChIP-seq. We integrate the ChIP-seq with RNA-seq data, which measures the digital transcriptome. Our genome-wide analyses indicate that most differentiation-associated genes in undifferentiated cells lack an active chromatin mark and initiative Pol II; instead, they are associated with either the repressive H3K27me3 mark or no detectable mark. CONCLUSIONS: Our results reveal that most of the differentiation-associated genes in undifferentiated-cell-enriched Drosophila testes are associated with monovalent but not bivalent modifications, a chromatin signature that is distinct from the data reported in mammalian stem or precursor cells, which may reflect cell type specificity, species specificity, or both.

    PMID: 20398323 [PubMed - as supplied by publisher]



    More...

Latest Articles

Collapse

  • seqadmin
    Recent Advances in Sequencing Analysis Tools
    by seqadmin


    The sequencing world is rapidly changing due to declining costs, enhanced accuracies, and the advent of newer, cutting-edge instruments. Equally important to these developments are improvements in sequencing analysis, a process that converts vast amounts of raw data into a comprehensible and meaningful form. This complex task requires expertise and the right analysis tools. In this article, we highlight the progress and innovation in sequencing analysis by reviewing several of the...
    05-06-2024, 07:48 AM
  • seqadmin
    Essential Discoveries and Tools in Epitranscriptomics
    by seqadmin




    The field of epigenetics has traditionally concentrated more on DNA and how changes like methylation and phosphorylation of histones impact gene expression and regulation. However, our increased understanding of RNA modifications and their importance in cellular processes has led to a rise in epitranscriptomics research. “Epitranscriptomics brings together the concepts of epigenetics and gene expression,” explained Adrien Leger, PhD, Principal Research Scientist...
    04-22-2024, 07:01 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, Yesterday, 06:35 AM
0 responses
14 views
0 likes
Last Post seqadmin  
Started by seqadmin, 05-09-2024, 02:46 PM
0 responses
18 views
0 likes
Last Post seqadmin  
Started by seqadmin, 05-07-2024, 06:57 AM
0 responses
17 views
0 likes
Last Post seqadmin  
Started by seqadmin, 05-06-2024, 07:17 AM
0 responses
19 views
0 likes
Last Post seqadmin  
Working...
X