Header Leaderboard Ad

Collapse

New Chemistry and Software for Sequel System Improve Read Length, Lower Project Costs

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • New Chemistry and Software for Sequel System Improve Read Length, Lower Project Costs

    We are pleased to announce a new version of our chemistry, SMRT Cells, and software for the Sequel System! The V4 software, V2 chemistry, and SMRT Cells tuned for the new sequencing chemistry kits will be available on January 23rd.

    These new releases allow the system to achieve mean read lengths of 10-18 kb, with half of the data in reads >20 kb, and throughput of 5-8 Gb. This enhancement improves results for important applications such as structural variant detection, targeted sequencing, metagenomics, minor variant detection, and isoform sequencing. The software release includes updates to the base calling algorithm that increase accuracy, as well as new features designed for clinical research applications. In addition to the performance improvements, the Sequel System is now capable of loading 80 kb sequencing libraries.

    More information: http://www.pacb.com/blog/new-chemist...project-costs/

  • #2
    This "looks" promising.
    More form their blog:
    " ... This release improves users’ ability to perform low-fold structural variant detection and key targeted sequencing applications. For structural variant detection, they can now accomplish the same or better quality of results for structural variant analysis using, on average, half the number of SMRT Cells compared to the previously available chemistry. Long reads provided by the new chemistry also enable the detection of larger-scale structural variants; in particular, there is a 3-fold increase in sensitivity of insertions over 5 kb. For targeted sequencing, the new chemistry and software give users more flexibility. For example, for minor variant detection, customers can either gain detection sensitivity or reduce cost per sample with increased sample multiplexing. ... "

    Comment


    • #3
      Sounds good.

      Base accuracy seems to be improved also. Any numbers?

      Comment

      Latest Articles

      Collapse

      • seqadmin
        A Brief Overview and Common Challenges in Single-cell Sequencing Analysis
        by seqadmin


        ​​​​​​The introduction of single-cell sequencing has advanced the ability to study cell-to-cell heterogeneity. Its use has improved our understanding of somatic mutations1, cell lineages2, cellular diversity and regulation3, and development in multicellular organisms4. Single-cell sequencing encompasses hundreds of techniques with different approaches to studying the genomes, transcriptomes, epigenomes, and other omics of individual cells. The analysis of single-cell sequencing data i...

        01-24-2023, 01:19 PM
      • seqadmin
        Introduction to Single-Cell Sequencing
        by seqadmin
        Single-cell sequencing is a technique used to investigate the genome, transcriptome, epigenome, and other omics of individual cells using high-throughput sequencing. This technology has provided many scientific breakthroughs and continues to be applied across many fields, including microbiology, oncology, immunology, neurobiology, precision medicine, and stem cell research.

        The advancement of single-cell sequencing began in 2009 when Tang et al. investigated the single-cell transcriptomes
        ...
        01-09-2023, 03:10 PM

      ad_right_rmr

      Collapse
      Working...
      X