Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Adaptive bandwidth KDE for NGS data

    Abstract

    Background

    High-throughput sequencing experiments can be viewed as measuring some sort of a "genomic signal" that may represent a biological event such as the binding of a transcription factor to the genome, locations of chromatin modifications, or even a background or control condition. Numerous algorithms have been developed to extract different kinds of information from such data. However, there has been very little focus on the reconstruction of the genomic signal itself. Such reconstructions may be useful for a variety of purposes ranging from simple visualization of the signals to sophisticated comparison of different datasets.

    Methods

    Here, we propose that adaptive-bandwidth kernel density estimators are well-suited for genomic signal reconstructions. This class of estimators is a natural extension of the fixed-bandwidth estimators that have been employed in several existing ChIP-Seq analysis programs.

    Results

    Using a set of ChIP-Seq datasets from the ENCODE project, we show that adaptive-bandwidth estimators have greater accuracy at signal reconstruction compared to fixed-bandwidth estimators, and that they have significant advantages in terms of visualization as well. For both fixed and adaptive-bandwidth schemes, we demonstrate that smoothing parameters can be set automatically using a held-out set of tuning data. We also carry out a computational complexity analysis of the different schemes and confirm through experimentation that the necessary computations can be readily carried out on a modern workstation without any significant issues.

    Background High-throughput sequencing experiments can be viewed as measuring some sort of a "genomic signal" that may represent a biological event such as the binding of a transcription factor to the genome, locations of chromatin modifications, or even a background or control condition. Numerous algorithms have been developed to extract different kinds of information from such data. However, there has been very little focus on the reconstruction of the genomic signal itself. Such reconstructions may be useful for a variety of purposes ranging from simple visualization of the signals to sophisticated comparison of different datasets. Methods Here, we propose that adaptive-bandwidth kernel density estimators are well-suited for genomic signal reconstructions. This class of estimators is a natural extension of the fixed-bandwidth estimators that have been employed in several existing ChIP-Seq analysis programs. Results Using a set of ChIP-Seq datasets from the ENCODE project, we show that adaptive-bandwidth estimators have greater accuracy at signal reconstruction compared to fixed-bandwidth estimators, and that they have significant advantages in terms of visualization as well. For both fixed and adaptive-bandwidth schemes, we demonstrate that smoothing parameters can be set automatically using a held-out set of tuning data. We also carry out a computational complexity analysis of the different schemes and confirm through experimentation that the necessary computations can be readily carried out on a modern workstation without any significant issues.

Latest Articles

Collapse

  • seqadmin
    Advanced Tools Transforming the Field of Cytogenomics
    by seqadmin


    At the intersection of cytogenetics and genomics lies the exciting field of cytogenomics. It focuses on studying chromosomes at a molecular scale, involving techniques that analyze either the whole genome or particular DNA sequences to examine variations in structure and behavior at the chromosomal or subchromosomal level. By integrating cytogenetic techniques with genomic analysis, researchers can effectively investigate chromosomal abnormalities related to diseases, particularly...
    09-26-2023, 06:26 AM
  • seqadmin
    How RNA-Seq is Transforming Cancer Studies
    by seqadmin



    Cancer research has been transformed through numerous molecular techniques, with RNA sequencing (RNA-seq) playing a crucial role in understanding the complexity of the disease. Maša Ivin, Ph.D., Scientific Writer at Lexogen, and Yvonne Goepel Ph.D., Product Manager at Lexogen, remarked that “The high-throughput nature of RNA-seq allows for rapid profiling and deep exploration of the transcriptome.” They emphasized its indispensable role in cancer research, aiding in biomarker...
    09-07-2023, 11:15 PM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 09-29-2023, 09:38 AM
0 responses
10 views
0 likes
Last Post seqadmin  
Started by seqadmin, 09-27-2023, 06:57 AM
0 responses
12 views
0 likes
Last Post seqadmin  
Started by seqadmin, 09-26-2023, 07:53 AM
1 response
25 views
0 likes
Last Post seed_phrase_metal_storage  
Started by seqadmin, 09-25-2023, 07:42 AM
0 responses
17 views
0 likes
Last Post seqadmin  
Working...
X