Hi,
This is somewhat of an open-ended question and is related to this post from over a year ago: RNAseq analysis by DESeq : can't find a gene previously published as important
The basic question is this: If Gene X has been shown by quantitative PCR to have more copies of mRNA in condition A when compared to condition B, is there a way to weight the gene in RNA-seq analysis if it is not initially showing as differentially expressed? (let's assume the more copies are due to expression and not because of a lack of degradation)
FWIW, I've used the tuxedo suite and STARaligner > htseq-count > edgeR as my two pipelines for DE and have not found anything in those tools to 'mark' a gene as something that should come out as significant.
What I can imagine is this: let's say my p-value cutoff is .05 and gene X is showing up as .07, i.e. not significant. Is the solution to simply set .08 as my 'true' cutoff, thus making gene X significant? Or is that just way too simplistic? Is there a more sophisticated way to do this with one of the software tools available (either the ones above or not).
Thanks for any suggestions / comments.
This is somewhat of an open-ended question and is related to this post from over a year ago: RNAseq analysis by DESeq : can't find a gene previously published as important
The basic question is this: If Gene X has been shown by quantitative PCR to have more copies of mRNA in condition A when compared to condition B, is there a way to weight the gene in RNA-seq analysis if it is not initially showing as differentially expressed? (let's assume the more copies are due to expression and not because of a lack of degradation)
FWIW, I've used the tuxedo suite and STARaligner > htseq-count > edgeR as my two pipelines for DE and have not found anything in those tools to 'mark' a gene as something that should come out as significant.
What I can imagine is this: let's say my p-value cutoff is .05 and gene X is showing up as .07, i.e. not significant. Is the solution to simply set .08 as my 'true' cutoff, thus making gene X significant? Or is that just way too simplistic? Is there a more sophisticated way to do this with one of the software tools available (either the ones above or not).
Thanks for any suggestions / comments.
Comment