Header Leaderboard Ad

Collapse

Introducing KmerCompressor, a tool for set operations on kmers

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • luc
    replied
    Very neat! Time to start playing.

    Leave a comment:


  • Brian Bushnell
    replied
    It's currently capped at 31, though I could make an unlimited-kmer-length version in a few hours. That would probably be worth doing, if I get some free time.

    Leave a comment:


  • GenoMax
    replied
    What is the upper limit on the k-mer size one can specify?

    Leave a comment:


  • Introducing KmerCompressor, a tool for set operations on kmers

    I'd like to introduce a new BBTool, KmerCompressor. This will take a dataset and reduce it to its set of constituent kmers, and print an optimally-condensed representation of them in fasta format, in which each kmer occurs exactly once. This is similar to an assembler, but it has additional capabilities regarding kmer count cutoffs that allow it to be used to perform arbitrary set operations on kmers, which allows advanced filtering of raw reads to capture specific features such as ribosomes, mitochondria, and chloroplasts, or filter by taxonomy.

    The basic usage is like this:
    kcompress.sh in=reads.fq out=set.fa

    To get just the 31-mers that appear between 100 and 150 times in a dataset:
    kcompress.sh in=reads.fq out=set.fa min=100 max=150 k=31

    To use it for a set union (all the kmers in either of two files):
    kcompress.sh in=ecoli.fa,salmonella.fa out=union.fa

    With those basic operations, it is now possible to do various set operations. For example:
    kcompress.sh in=fungal_genome.fa out=set_g.fa
    kcompress.sh in=fungal_mitochondria.fa out=set_m.fa


    Each of those sets has each kmer represented exactly once. Therefore, you can perform an intersection like this:
    kcompress.sh in=set_g.fa,set_m.fa out=intersection.fa min=2

    Or a subtraction like this:
    kcompress.sh in=set_m.fa,intersection.fa out=m_minus_g.fa max=1

    Then m_minus_g.fa contains all the kmers that are specific only to mitochondria in that organism, and could be used for filtering reads in an iterative assembly process.
    I've been recently using it to create a set of ribosomal kmers for rapid metatranscriptome rRNA filtering using BBDuk, by reducing a very large ribosomal (16S/18S) database to just the set of kmers that occur often (and are thus both correct and conserved). This is useful for avoiding false positives, and reducing load time and memory usage compared to working with the entire database. For example:
    dedupe.sh in=multiple_ribo_databases.fa.gz out=nodupes.fa.gz
    kcompress.sh in=nodupes.fa.gz out=compressed.fa.gz k=31 min=5


    ...will result in a much smaller file, with similar (tunable) sensitivity and better specificity compared to the original. Subsequently, I run:
    bbduk.sh in=metatranscriptome.fq.gz outu=nonribo.fq.gz outm=ribo.fq.gz ref=compressed.fa.gz k=31

    ...to separate the reads.

    P.S. A link to a file I created with KmerCompressor: ribokmers.fa.gz
    This 9MB file contains commonly-occurring ribosomal kmers from Silva. Used in conjunction with BBDuk, like this:

    bbduk.sh in=reads.fq outm=ribo.fq outu=nonribo.fq k=31 ref=ribokmers.fa.gz


    ...it has a roughly 99.94% sensitivity against synthetic 1x150bp from the full Silva database (180MB compressed), a 99.98% sensitivity with hdist=1, and 99.994% sensitivity at k=25 hdist=1.
    Last edited by Brian Bushnell; 10-06-2015, 04:49 PM.

Latest Articles

Collapse

  • seqadmin
    Improved Targeted Sequencing: A Comprehensive Guide to Amplicon Sequencing
    by seqadmin



    Amplicon sequencing is a targeted approach that allows researchers to investigate specific regions of the genome. This technique is routinely used in applications such as variant identification, clinical research, and infectious disease surveillance. The amplicon sequencing process begins by designing primers that flank the regions of interest. The DNA sequences are then amplified through PCR (typically multiplex PCR) to produce amplicons complementary to the targets. RNA targets...
    03-21-2023, 01:49 PM
  • seqadmin
    Targeted Sequencing: Choosing Between Hybridization Capture and Amplicon Sequencing
    by seqadmin




    Targeted sequencing is an effective way to sequence and analyze specific genomic regions of interest. This method enables researchers to focus their efforts on their desired targets, as opposed to other methods like whole genome sequencing that involve the sequencing of total DNA. Utilizing targeted sequencing is an attractive option for many researchers because it is often faster, more cost-effective, and only generates applicable data. While there are many approaches...
    03-10-2023, 05:31 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, Yesterday, 12:26 PM
0 responses
7 views
0 likes
Last Post seqadmin  
Started by seqadmin, 03-17-2023, 12:32 PM
0 responses
14 views
0 likes
Last Post seqadmin  
Started by seqadmin, 03-15-2023, 12:42 PM
0 responses
21 views
0 likes
Last Post seqadmin  
Started by seqadmin, 03-09-2023, 10:17 AM
0 responses
68 views
1 like
Last Post seqadmin  
Working...
X