Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Understanding DESeq2 dispersion estimates

    I construct a toy dataset with
    Code:
    > m
          Control  Case
    GeneA    3891  4591
    GeneB   69543 72122
    > colData
                 cc
    Case       Case
    Control Control
    > d <- DESeqDataSetFromMatrix(m, colData=colData, design =~cc)
    Then, I get the gene-wise dispersion
    Code:
    > d <- estimateSizeFactors(d)
    > d <- estimateDispersionsGeneEst(d)
    > mcols(d)
    DataFrame with 2 rows and 5 columns
       baseMean     baseVar   allZero dispGeneEst dispGeneEstConv
      <numeric>   <numeric> <logical>   <numeric>       <logical>
    1  4228.732    37181.63     FALSE 0.001842478            TRUE
    2 70857.604 10439534.06     FALSE 0.002065126            TRUE
    Now, I want to check i the dispersion estimates are just fitting a negative binomial on each gene's count (pooled conditions).
    Code:
    > fitdistr(as.vector(round(counts(d, normalize=T)[1,])),"negative binomial")
         size         mu    
      1207.3898   4228.5000 
     (1543.6506) (  97.5636)
    > fitdistr(as.vector(round(counts(d, normalize=T)[2,])),"negative binomial")
          size          mu    
        970.5831   70857.5000 
     (  982.6550) ( 1616.2617)

    Now the dispersion is the inverse of size, so it should be
    Code:
    > c(1/1207.3898, 1/970.5831)
    [1] 0.0008282329 0.0010303085
    But this is different from
    Code:
    > mcols(d)$dispGeneEst
    [1] 0.001842478 0.002065126

  • #2
    No, it does not work like that. First of all, DESeq2's model is that the counts are NB-distributed. You have fit an NB distribution to the rounded normalized counts instead. Why would you do that? Also, you don't have any residual degrees of freedom in your setting, so your example is ill-defined anyway.

    Maybe have a look at our preprint, with all the mathematical details in the Methods section: http://doi.org/10.1101/002832

    Comment


    • #3
      Last month, Gordon Smyth wrote on the Bioconductor list that edgeR with rounded counts would be an acceptable input for the analysis. EBseq, however, handles this kind of data without rounding.

      Comment


      • #4
        Of course, all these tools will accept any kind of integer data, no matter whether it is real counts or some other data that has been rounded to make it look like counts. Whether the latter makes any sense depends a lot on circumstances. (By definition of the English word, a "count" is an integer. If you need to round it first, it was not a count in the first place. Hence, "rounded counts" is a contradiction in terms -- what Gordon meant is simply that if you have non-integer data which are for some reason more or less close to the counts that you should have if you had counted correctly, the rounding is fine.)

        But what does all this have to do with the OP's question, and with my answer, neither of which was about using rounded something as input?

        Comment


        • #5
          Thank you for clarifying that. I hadn't read the code.

          Comment

          Latest Articles

          Collapse

          • seqadmin
            Choosing Between NGS and qPCR
            by seqadmin



            Next-generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR) are essential techniques for investigating the genome, transcriptome, and epigenome. In many cases, choosing the appropriate technique is straightforward, but in others, it can be more challenging to determine the most effective option. A simple distinction is that smaller, more focused projects are typically better suited for qPCR, while larger, more complex datasets benefit from NGS. However,...
            10-18-2024, 07:11 AM
          • seqadmin
            Non-Coding RNA Research and Technologies
            by seqadmin




            Non-coding RNAs (ncRNAs) do not code for proteins but play important roles in numerous cellular processes including gene silencing, developmental pathways, and more. There are numerous types including microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA), and more. In this article, we discuss innovative ncRNA research and explore recent technological advancements that improve the study of ncRNAs.

            Nobel Prize for MicroRNA Discovery
            This week,...
            10-07-2024, 08:07 AM

          ad_right_rmr

          Collapse

          News

          Collapse

          Topics Statistics Last Post
          Started by seqadmin, 11-01-2024, 06:09 AM
          0 responses
          13 views
          0 likes
          Last Post seqadmin  
          Started by seqadmin, 10-30-2024, 05:31 AM
          0 responses
          16 views
          0 likes
          Last Post seqadmin  
          Started by seqadmin, 10-24-2024, 06:58 AM
          0 responses
          24 views
          0 likes
          Last Post seqadmin  
          Started by seqadmin, 10-23-2024, 08:43 AM
          0 responses
          52 views
          0 likes
          Last Post seqadmin  
          Working...
          X